O que são estrelas de nêutrons?

Estrelas de nêutrons são, indiscutivelmente, um dos objetos mais exóticos do Universo. Como um daqueles amigos irritantes que aparentemente se superestima em cada aspecto da vida, estrelas de nêutrons excedem em quase todas as categorias: gravidade; força do campo magnético; densidade; e temperatura.

“Mas espere”, eu ouvi dizer, “buracos negros são muito mais densos!” Em certo sentido, isso é verdade, mas não podemos realmente determinar a estrutura interna de um buraco negro, uma vez que ela está para sempre oculta por trás do horizonte de eventos. Estrelas de nêutrons, com uma crosta sólida (e com até mesmo oceanos e atmosfera!) são os objetos sólidos mais densos que podemos observar, chegando algumas vezes a densidade de um núcleo atômico em seu núcleo.

Uma amostra de material de estrela de nêutrons do tamanho de um grão de areia pesaria aproximadamente o mesmo que o maior navio que já navegou pelos nossos mares – mais de 500.000 toneladas. Estrelas de nêutrons também oferecem uma riqueza de comportamento extremo que as tornam um alvo atraente para os astrofísicos.

Origem de uma estrela de nêutrons

Acredita-se que estrelas de nêutrons são formadas a partir da explosão de uma supernova que acaba com a vida de uma estrela de tamanho médio, com cerca de 8 a 20 vezes a massa do nosso sol. Uma vez que seu combustível nuclear é consumido, a estrela explode, perdendo a maior parte de seu material para o espaço. O restante colapsa em um pequeno objeto (pelos padrões astronômicos) com cerca de 22 km de diâmetro, o tamanho de uma cidade média, mas ainda assim com cerca de 1,5 vezes a massa do nosso sol.

Enquanto a crosta é composta principalmente de ferro cristalino, tais átomos não podem sobreviver profundamente na estrela, e o material transita através de uma estranha “pasta nuclear”  para o fluido de nêutrons do núcleo.

As condições no núcleo não podem ser reproduzidas em experiências terrestres, e a incerteza sobre esta região – talvez compreendendo exóticos híperons  ou até mesmo a “matéria estranha” – é o principal motivador para o estudo desses objetos.

Estrelas de nêutrons emitem pouca luz visível, o que as tornam praticamente impossíveis de detectar pelos modos tradicionais. A maioria dos poucos 1.000 exemplos conhecidos foram descobertos através das suas pulsações de rádio.

Como faróis cósmicos, os feixes de rádio emparelhados por esses pulsares varrem todo o universo. Se o feixe atravessa a Terra, ele pode ser detectado com radiotelescópios. O pulsar mais próximo, PSR J0437-4715, está a cerca de 500 anos-luz de distância.

Claro, existem muitos outros exemplos de objetos com feixes que não atingem a Terra, então a amostra observada é uma pequena fração do total da população galática. Assim, como estes pulsares de rádio comuns, existem vários outros mais interessantes, também com nomes bastante peculiares:

Magnetares são pulsares com campos magnéticos incrivelmente fortes.
Microquasares são pulsares com jatos que atingem velocidades relativistas.

Rotação alucinante

Típicas estrelas de nêutrons pulsantes giram cerca de 1 vez por segundo, o que é extremamente rápido para um objeto denso e massivo. Mas se a estrela têm uma companheira binária normal, a estrela de nêutrons pode “girar” a mais de 10 vezes a velocidade de uma máquina de lavar roupa comum.

O processo pelo qual isso ocorre é chamado de acreção. Ao longo dos bilhões de anos de vida desses objetos, a estrela companheira evolui (e amplia) até as camadas externas sentirem a força gravitacional da estrela de nêutrons.

O gás da estrela companheira pode então fluir para a estrela de nêutrons, a fazendo girar mais.

Este processo tem alguns efeitos secundários notáveis. O gás caindo na estrela de nêutrons é aquecido a dezenas de milhões de graus, e a estrela de nêutrons vai começar a brilhar intensamente em raios-X, em vez de ondas de rádio. Essa radiação é bloqueada pela atmosfera da Terra, mas pode ser detectada por telescópios em satélites.

Como ocorre a fusão?

O gás que se acumula na superfície da estrela de nêutron através do processo de acreção é semelhante à composição do nosso próprio sol – principalmente hidrogênio e hélio, com uma pequena porcentagem de outros elementos.

A enorme gravidade da estrela de nêutrons – algumas centenas de bilhões de vezes mais forte que a da Terra – irá comprimir e aquecer o gás, e depois de algumas horas ou dias a fusão nuclear pode ocorrer.

Mas essa queima não é tão bem comportada como em estrelas como o sol. Em vez disso, a queima é instável, e prossegue em apenas alguns segundos para envolver completamente a superfície da estrela de nêutrons, esgotando todo o combustível acumulado e dando origem a uma explosão de raios-X visível em toda a galáxia.

Estas explosões têm sido observados em cerca de 100 sistemas, desde os primeiras telescópios de raios-X serem lançados na década de 1960. Ocorrendo uma vez a cada poucas horas ou dias (dependendo da taxa de acreção), elas são de longe as mais frequentes explosões termonucleares no universo.

Claro que o fornecimento de gás a partir da companheira uma hora acaba. E quando isso ocorre, a estrela de nêutrons pode reprisar o seu papel como um pulsar de rádio, embora agora girando centenas de vezes a cada segundo. O recordista atual PSR J1748-2446AD gira 716 vezes por segundo!

Fonte: http://misteriosdomundo.org/

Acesse nosso Facebook – https://www.facebook.com/UniversoGenial?ref=hl

Acesse nosso Twitter – https://twitter.com/universo_genial

Anúncios

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s