O efeito fotoelétrico.

Como toda descoberta, esta também se deu por acaso quando Heinrich Hertz, em 1887, investigava a natureza eletromagnética da luz. Estudando a produção de descargas elétricas entre duas superfícies de metal em potenciais diferentes, ele observou que uma faísca proveniente de uma superfície gerava uma faísca secundária na outra. Como esta era difícil de ser visualizada, Hertz construiu uma proteção sobre o sistema para evitar a dispersão da luz. No entanto, isto causou uma diminuição da faísca secundária. Na seqüência dos seus experimentos ele constatou que o fenômeno não era de natureza eletrostática, pois não havia diferença se a proteção era feita de material condutor ou isolante.

e-bomb-photon

Após uma série de experimentos, Hertz, confirmou o seu palpite de que a luz poderia gerar faíscas. Também chegou à conclusão que o fenômeno deveria ser devido apenas à luz ultravioleta. Em 1888, estimulado pelo trabalho de Hertz, Wilhelm Hallwachs mostrou que corpos metálicos irradiados com luz ultravioleta adquiriam carga positiva. Para explicar o fenômeno, Lenard e Wolf publicaram um artigo na Annalen der Physik, sugerindo que a luz ultravioleta faria com que partículas do metal deixassem a superfície do mesmo. Dois anos após a descoberta de Hertz, Thomson postulou que o efeito fotoelétrico consistia na emissão de elétrons.

Para prová-lo, demonstrou experimentalmente que o valor de e/m das partículas emitidas no efeito fotoelétrico era o mesmo que para os elétrons associados aos raios catódicos. Também concluiu que esta carga é da mesma ordem que a carga adquirida pelo átomo de hidrogênio na eletrólise de soluções. O valor de e encontrado por ele (6,8 x 10-10 esu) encontra-se muito perto do aceito atualmente ( 4,77 x 10-10 esu ou 1,60×10-19 C). Uma ilustração do arranjo experimental é apresentada na figura abaixo.

photoelectric_virginia

O feixe de luz arranca elétrons da placa metálica. Estes elétrons formam uma corrente, que pode ser detectada por um amperímetro. A corrente diminui se colocarmos uma baterial com o terminal negativo ligado na placa coletora. Mais adiante veremos como Einstein usou este fato para escrever uma equação e ganhar o Prêmio Nobel! Em 1903, Lenard provou que a energia dos elétrons emitidos não apresentava a menor dependência da intensidade da luz. Em 1904, Schweidler mostrou que a energia do elétron era proporcional à freqüência da luz.

A TEORIA DE PLANCK.

Os resultados apresentados na seção anterior contradiziam a teoria clássica do eletromagnetismo, e desafiaram a inteligência humana durante 18 anos. Em 1905, Einstein usou uma proposta apresentada por Planck em 1900, e conseguiu explicar o efeito fotoelétrico. O trabalho de Planck referia-se à radiação de corpo negro, e sua proposta deu início ao que hoje conhecemos como teoria quântica. Não temos tempo para tratar este assunto detalhadamente, mas é interessante, pelo menos, discutirmos os fundamentos dessa proposta de Planck.

Um fato importante dessa história ocorreu por volta de 1800, quando o astrônomo inglês Sir William Herschel estava observando a decomposição da luz branca ao atravessar um prisma.

Herschel conseguiu medir a temperatura correspondente a cada cor do espectro, e descobriu que o efeito térmico aumentava à medida que o termômetro se aproximava da vermelho. Mais importante ainda, ele observou que a efeito continuava a aumentar mesmo depois do vermelho, na parte escura do espectro. Hoje sabemos que essa é a região do infravermelho, e que todos os corpos irradiam no infravermelho.

Esses estudos continuaram e desembocaram naquilo que na segunda metade do século XIX passou a ser conhecida como radiação de corpo negro. Essencialmente, é o seguinte: qualquer corpo em determinada temperatura, irradia energia, que depende dessa temperatura. E como Herschel já havia descoberto, cada temperatura está associada a uma freqüência, isto é, a uma determinada cor. Veja a figura abaixo, que representa a distribuição espectral da radiação de um corpo negro a uma temperatura da ordem de 9.000 K.

A parte colorida corresponde ao espectro visível. No final do século XIX, várias tentativas foram feitas para explicar essa curva. Todas essas tentativas baseavam-se nas teorias clássicas da termodinâmica. Stefan e Boltzmann mostraram que a emissão de energia cresce com a temperatura. Isto é,

I a T4. Atualmente este resultado é conhecido como lei de Stefan-Boltzmann. Wien mostrou que o máximo da curva espectral desloca-se com a temperatura, conforme ilustra a figura abaixo.
planckcv

Quando a temperatura cresce, o máximo desloca-se no sentido de números de onda maiores, isto é, no sentido de menores comprimentos de onda.

Rayleigh e Jeans partiram da idéia de que a energia irradiada vem da oscilação do campo eletromagnético, e mostraram que

I a Tl-4 A lei de Rayleigh-Jeans, ajustava a curva na faixa dos altos comprimentos de onda, mas divergia na faixa de baixos comprimentos. Ela passou a ser conhecida como a catástrofe do ultravioleta. A figura abaixo ilustra essa situação.
bb_altoscomprimentosdeonda

Em 1900, Max Planck fez uma proposta que ele considerou desesperadora, mas que revelou-se revolucionária. Ele mostrou que a lei de Rayleigh-Jeans não ajustava a curva espectral em toda a faixa de comprimentos de onda, porque Rayleigh e Jeans admitiam que os osciladores irradiavam qualquer quantidade de energia. Planck impôs uma restrição, isto é, os osciladores só podiam emitir energia em determinadas quantidades. Mais precisamente, em quantidades inteiras de hf, onde h passou a ser chamada de constante de Planck, e f é a freqüência da radiação emitida. Esta suposição é hoje conhecida como quantização da energia. Em notação moderna,

E=nhf.

A partir dessa idéia, ele obteve uma expressão que ajustou completamente a curva espectral da radiação de corpo negro.

A EQUAÇÃO DE EINSTEIN.

A partir dos resultados discutidos na primeira seção, principalmente daqueles obtidos por Lenard, Einstein desenvolveu, em 1905, uma teoria muito simples e revolucionária para explicar o efeito fotoelétrico. Simplesmente, ao invés de considerar a luz como uma onda, ele propôs que ela seja composta de corpúsculos, denominados fótons. Cada fóton, ou quantum de luz, transporta uma energia dada por hn, onde h é a constante de Planck, e n é a freqüência da luz. A proposta de Einstein recupera uma idéia que foi defendida por Newton, e abandonada depois do experimento de Young.

De acordo com esta proposta, um quantum de luz transfere toda a sua energia (hf) a um único elétron, independentemente da existência de outros quanta de luz. Tendo em conta que um elétron ejetado do interior do corpo perde energia até atingir a superfície, Einstein propôs a seguinte equação, que relaciona a energia do elétron ejetado (E) na superfície, à freqüência da luz incidente (n) e à função trabalho do metal (f), que é a energia necessária para escapar do material. Isto é,

E = hn – f

A equação acima vale para todos os elétrons ejetados. Como elétrons são ejetados de diferentes profundidades do material, tem-se uma distribuição de energia. Einstein sugeriu que se usa-se apenas os elétrons mais energéticos, isto é, aqueles que saíssem da parte mais superficial. Assim, a equação de Einstein transforma-se em

Emax = hn – f Conhecendo-se Emax e a frequência da luz incidente, é possível determinar h e f. Para entender como se determina a energia cinética máxima dos elétrons, veja a ilustração do arranjo experimental, extraída de http://www.phys.virginia.edu/.

Se o potencial negativo da placa coletora for nulo, todos os elétrons que saem da placa emissora chegam na coletora. Este é o caso em que temos a maior distribuição de fóton-elétrons. Se aumentarmos este potencial retardador, a corrente diminui. Quando a corrente for zero, tem-se um potencial (também conhecido como potencial de corte) capaz de repelir os elétrons mais energéticos. Então eV é uma estimativa de Emax.

Agora podemos escrever a equação de Einstein na forma adequada para a verificação experimental:

eV = hn – f

A equação acima pode ser escrita de uma forma ainda mais apropriada:

V = hn – f

Neste caso, V é dado em volts, h em ev.s, n em Hz e f em eV.

A partir da sua equação, Einstein fez a seguinte proposta para ser verificada experimentalmente: variando-se a freqüência, n, da luz incidente e plotando-se V versus n, obtêm-se uma reta, cujo coeficiente angular deve ser h/e. Este foi o primeiro experimento que demonstrou a universalidade da constante de Planck. Isto é, h é uma constante independente do material irradiado. Vejamos uma simulação dessa experiência proposta por Albert Einstein.

Nesta “experiência”, uma lâmpada de mercúrio é usada para produzir a luz incidente. Esta lâmpada é vista na parte superior esquerda da figura. Cinco linhas espectrais são filtradas, para produzir feixes monocromáticos: amarelo, verde, violeta e dois feixes de ultravioleta. Cada linha é caracterizada pela sua freqüência.

O catodo (placa emissora) é indicado pela letra “C”, enquanto o anodo (placa coletora) é indicado pela letra “A”. A corrente fotoelétrica é medida no amperímetro (equipamento com tarja vermelha), enquanto o potencial retardador é indicado no voltímetro (tarja azul).

O painel à direita permite que se escolha o material do catodo (césio, potássio ou sódio) e a luz incidente. Além disso, é possível variar o potencial retardador. O resultado da “medida” é plotado no gráfico do potencial versus freqüência, à esquerda do circuito.

Para cada catodo, há um conjunto de pontos no gráfico Vxf. Estes pontos são ajustados por uma reta, cujo coeficiente angular fornece o valor da constante de Planck, e a interseção da reta com o eixo vertical fornece o valor da função trabalho.

 photoelectric_virginia2

O primeiro pesquisador experimental a apresentar resultados realmente importantes para comprovar a equação de Einstein foi Arthur Llewellyn Hughes, que demonstrou, em 1912, que a inclinação da função E (n) variava entre 4,9×10-27 e 5,7×10-27 erg.s, dependendo da natureza do material irradiado.

Em 1916, Millikan publicou um extenso trabalho sobre seus resultados obtidos na Universidade de Chicago. Ele comprovou que a equação de Einstein se ajusta muito bem aos experimentos, sendo h = 6,57×10-27 erg.s. Em 1949, Millikan confessou ter dedicado mais de dez anos de trabalho testando a equação de Einstein, com absoluto ceticismo em relação à sua validade. Todavia, contrariando todas as suas expectativas os resultados experimentais confirmaram a teoria de Einstein sem qualquer ambiguidade. Este comentário reflete muito bem a postura da comunidade científica da época diante da proposta de Einstein. Entre 1905 e 1923, poucos foram os que levaram a sério sua teoria, entre os quais podemos destacar Planck.

O PRÊMIO NOBEL DE EINSTEIN.

O ano de 1905 é considerado o “annus mirabili” da vida científica de Albert Einstein. Ao longo daquele ano ele publicou cinco artigos, três dos quais revolucionaram a física. Entre estes encontra-se sua abordagem ao problema do efeito fotoelétrico.

Einstein tem contribuições importantes em quase todas as áreas da física, mas, sem qualquer dúvida, suas contribuições mais impactantes foram aquelas relacionadas com a teoria da relatividade restrita e com a teoria da relatividade geral. No entanto, ao escolher o Prêmio Nobel de 1921, o Comitê Nobel para Física da Academia Real de Ciências da Suécia deu mais importância ao trabalho sobre o efeito fotoelétrico. Literalmente, o prêmio foi concedido a Albert Einstein com a seguinte justificativa: “for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect“. Isto é, pelas suas contribuições à Física Teórica, mas especialmente pela sua descoberta da lei do efeito fotoelétrico.

com-a-descoberta-da-lei-do-efeito-fotoeletrico-einstein-recebeu-seu-prem (1)

No seu discurso de apresentação, o Coordenador do Comitê, Svante Arrhenius, fez apenas uma pequena referência à teoria da relatividade, enfatizando que a principal discussão em torno do assunto restringia-se à área epistemológica e filosófica. Mencionou também que implicações astrofísicas estavam sob rigorosos exames. É importante chamar a atenção que já em 1919, o eclipse solar observado em Sobral (Ce) e em outras partes do mundo, comprovava os principais resultados da teoria da relatividade geral. O restante do discurso foi obviamente quase que dedicado ao efeito fotoelétrico.

Einstein não pôde comparecer à cerimônia porque estava no Japão. Portanto, a tradicional Conferência Nobel não foi ministrada na ocasião da entrega do Prêmio. Em 1923 ele apresentou uma conferência na “Assembléia Nórdica de Naturalistas“, em Gotemburgo, intitulada “Idéias fundamentais e problemas da teoria da relatividade“. É esta conferência que consta nos arquivos da Academia. No entanto, há uma nota de rodapé esclarecendo que a conferência não foi apresentada na ocasião da entrega do Prêmio Nobel, e portanto, não se referia à descoberta do efeito fotoelétrico.

Fonte: http://physicsact.wordpress.com

Acesse nosso Facebook – https://www.facebook.com/UniversoGenial?ref=hl

Acesse nosso Twitter – https://twitter.com/universo_genial

Anúncios
por Jeferson Stefanelli Postado em Física

2 comentários em “O efeito fotoelétrico.

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s